
MATH 245 F18, Exam 1 Solutions

1. Carefully define the following terms: floor, divides, nand, Commutativity theorem (for propositions).

Let x ∈ R. Then there is a unique integer n, which we call the floor of x, which satisfies n ≤ x < n + 1. Let
a, b ∈ Z. We say that a divides b if there exists some c ∈ Z with ac = b. Let p, q be propositions. p nand q is a
compound proposition that is F if p, q are both T , and T otherwise. The Commutativity theorem states that for
any propositions p, q, p ∨ q ≡ q ∨ p and p ∧ q ≡ q ∧ p.

2. Carefully define the following terms: Double Negation semantic theorem, Vacuous Proof theorem, converse, predi-
cate.

The Double Negation semantic theorem states that for any proposition p, ¬(¬p) ≡ p. The Vacuous Proof theorem
states that for any propositions p, q, ¬p ` p → q. The converse of conditional proposition p → q is q → p. A
predicate is a collection of propositions, indexed by one or more free variables, each drawn from its domain.

3. Calculate, and simplify,
(
100
1

)
−
(
100
0

)
.

We have
(
100
1

)
= 100!

99!1! = 100·99!
99!1! = 100

1! = 100
1 = 100, cancelling 99! numerator and denominator. We also have(

100
0

)
= 100!

100!0! = 1
0! = 1

1 = 1, cancelling 100! numerator and denominator. Subtracting, we get 100− 1 = 99.

4. Let a, b ∈ Z, with a ≤ b. Prove that a + 1 ≤ b + 2, without using any theorems.
Because a ≤ b, the integer b − a ∈ N0. We also know that 1 ∈ N0, and their sum b − a + 1 ∈ N0. But also
b− a + 1 = (b + 2)− (a + 1), so a + 1 ≤ b + 2.

5. State the Conditional Interpretation Theorem, and prove it using a truth table.

Thm. Let p, q be propositions. Then p→ q ≡ q ∨ ¬p.

Pf. The third and fifth columns of the truth table (to the
right) agree; hence the two propositions are equivalent.

p q p→ q ¬p q ∨ ¬p
T T T F T
T F F F F
F T T T T
F F T T T

6. Fix our domain to be R. Simplify the proposition ¬(∀x ∃y ∀z, x ≤ y < z) as much as possible (where nothing is
negated).

We begin by pulling ¬ into the quantifiers, as ∃x ∀y ∃z ¬(x ≤ y < z). Note that x ≤ y < z ≡ (x ≤ y) ∧ (y < z),
so we apply De Morgan’s law to get ∃x ∀y ∃z (¬(x ≤ y)) ∨ ¬(y < z). Lastly, we simplify the inequalities to get
∃x ∀y ∃z (x > y) ∨ (y ≥ z). Note that this can NOT be written as a double inequality.

7. Let x ∈ R. Suppose that x is not odd. Prove that x
3 is not odd.

Warning: A direct proof is not recommended, because “not odd” does not imply “even” for real numbers.

We use a contrapositive proof. Assume that x
3 is not not odd, i.e. odd. Hence x

3 is an integer, and there is some
integer n with x

3 = 2n+ 1. Multiplying both sides by 3, we have x = 3(2n+ 1) = 2(3n) + 3 = 2(3n+ 1) + 1. Since
3n + 1 is an integer, x is odd, and hence not not odd.

8. Without using truth tables, prove the Composition Theorem: (p→ q) ∧ (p→ r) ` p→ (q ∧ r).

We use a direct proof. We apply Conditional Interpretation twice to the hypothesis, to get ((¬p)∨ q)∧ ((¬p)∨ r).
Now we apply distributivity to get (¬p) ∨ (q ∧ r). We apply Conditional Interpretation again to get p→ (q ∧ r).

9. Simplify ¬((p→ q) ∧ (¬q)) as much as possible (where only basic propositions are negated).

METHOD 1: We apply Conditional Interpretation to get ¬((q∨¬p)∧ (¬q)), and distributivity to get ¬((q∧¬q)∨
((¬p) ∧ (¬q))). Because q ∧ ¬q ≡ F , and F ∨ r ≡ r (for r = ((¬p) ∧ (¬q))), this simplifies as ¬((¬p) ∧ (¬q)).
Applying De Morgan’s Law, we get (¬¬p) ∨ (¬¬q). Finally, applying Double Negation twice, we get p ∨ q.

METHOD 2: We start with De Morgan’s Law, getting (¬(p → q)) ∨ (¬¬q). We apply Double negation, getting
(¬(p → q)) ∨ q. We apply Conditional Interpretation, getting (¬(q ∨ ¬p)) ∨ q. We apply De Morgan’s Law and
Double Negation, getting ((¬q) ∧ p) ∨ q. We apply distributivity, getting ((¬q) ∨ q) ∧ (p ∨ q). Since (¬q) ∨ q ≡ T ,
and T ∧ r ≡ r (for r = (p ∨ q)), the final result is p ∨ q.

10. Fix our domain to be R. Prove or disprove: ∀x ∃y ∀z, x2 ≤ y2 + z2.

The statement is true. Let x ∈ R be arbitrary. We will choose y = x. Now, let z ∈ R be arbitrary. We have
z2 ≥ 0, a property of squares. We now add x2 to both sides, getting z2 + x2 ≥ 0 + x2 = x2. Finally, since y = x,
also y2 = x2, so z2 + y2 ≥ x2.


