MATH 245 F18, Exam 1 Solutions

- 1. Carefully define the following terms: floor, divides, nand, Commutativity theorem (for propositions). Let $x \in \mathbb{R}$. Then there is a unique integer n, which we call the floor of x, which satisfies $n \le x < n + 1$. Let $a, b \in \mathbb{Z}$. We say that a divides b if there exists some $c \in \mathbb{Z}$ with ac = b. Let p, q be propositions. p nand q is a compound proposition that is F if p, q are both T, and T otherwise. The Commutativity theorem states that for any propositions $p, q, p \lor q \equiv q \lor p$ and $p \land q \equiv q \land p$.
- 2. Carefully define the following terms: Double Negation semantic theorem, Vacuous Proof theorem, converse, predicate.

The Double Negation semantic theorem states that for any proposition $p, \neg(\neg p) \equiv p$. The Vacuous Proof theorem states that for any propositions $p, q, \neg p \vdash p \rightarrow q$. The converse of conditional proposition $p \rightarrow q$ is $q \rightarrow p$. A predicate is a collection of propositions, indexed by one or more free variables, each drawn from its domain.

- 3. Calculate, and simplify, $\binom{100}{1} \binom{100}{0}$. We have $\binom{100}{1} = \frac{100!}{99!1!} = \frac{100\cdot99!}{99!1!} = \frac{100}{1!} = 100$, cancelling 99! numerator and denominator. We also have $\binom{100}{0} = \frac{100!}{100!0!} = \frac{1}{0!} = \frac{1}{1} = 1$, cancelling 100! numerator and denominator. Subtracting, we get 100 - 1 = 99.
- 4. Let $a, b \in \mathbb{Z}$, with $a \leq b$. Prove that $a + 1 \leq b + 2$, without using any theorems. Because $a \leq b$, the integer $b - a \in \mathbb{N}_0$. We also know that $1 \in \mathbb{N}_0$, and their sum $b - a + 1 \in \mathbb{N}_0$. But also b - a + 1 = (b + 2) - (a + 1), so $a + 1 \leq b + 2$.

5.	State the Conditional Interpretation Theorem, and prove it using a truth table.						
	Thm. Let p, q be propositions. Then $p \to q \equiv q \lor \neg p$.	p	q	$p \rightarrow q$	$\neg p$	$q \vee \neg p$	
		T	T	Т	F	Т	
	Pf. The third and fifth columns of the truth table (to the	T	F	F	F	F	
	right) agree; hence the two propositions are equivalent.	F	T	T	T	T	
		Γ	Γ	T	T	T	

6. Fix our domain to be \mathbb{R} . Simplify the proposition $\neg(\forall x \exists y \forall z, x \leq y < z)$ as much as possible (where nothing is negated).

We begin by pulling \neg into the quantifiers, as $\exists x \ \forall y \ \exists z \ \neg(x \le y < z)$. Note that $x \le y < z \equiv (x \le y) \land (y < z)$, so we apply De Morgan's law to get $\exists x \ \forall y \ \exists z \ (\neg(x \le y)) \lor \neg(y < z)$. Lastly, we simplify the inequalities to get $\exists x \ \forall y \ \exists z \ (x > y) \lor (y \ge z)$. Note that this can NOT be written as a double inequality.

7. Let $x \in \mathbb{R}$. Suppose that x is not odd. Prove that $\frac{x}{3}$ is not odd.

Warning: A direct proof is not recommended, because "not odd" does not imply "even" for real numbers.

We use a contrapositive proof. Assume that $\frac{x}{3}$ is not not odd, i.e. odd. Hence $\frac{x}{3}$ is an integer, and there is some integer n with $\frac{x}{3} = 2n + 1$. Multiplying both sides by 3, we have x = 3(2n + 1) = 2(3n) + 3 = 2(3n + 1) + 1. Since 3n + 1 is an integer, x is odd, and hence not not odd.

- 8. Without using truth tables, prove the Composition Theorem: $(p \to q) \land (p \to r) \vdash p \to (q \land r)$. We use a direct proof. We apply Conditional Interpretation twice to the hypothesis, to get $((\neg p) \lor q) \land ((\neg p) \lor r)$. Now we apply distributivity to get $(\neg p) \lor (q \land r)$. We apply Conditional Interpretation again to get $p \to (q \land r)$.
- 9. Simplify $\neg((p \to q) \land (\neg q))$ as much as possible (where only basic propositions are negated).

METHOD 1: We apply Conditional Interpretation to get $\neg((q \lor \neg p) \land (\neg q))$, and distributivity to get $\neg((q \land \neg q) \lor ((\neg p) \land (\neg q)))$. Because $q \land \neg q \equiv F$, and $F \lor r \equiv r$ (for $r = ((\neg p) \land (\neg q))$), this simplifies as $\neg((\neg p) \land (\neg q))$. Applying De Morgan's Law, we get $(\neg \neg p) \lor (\neg \neg q)$. Finally, applying Double Negation twice, we get $p \lor q$. METHOD 2: We start with De Morgan's Law, getting $(\neg(p \rightarrow q)) \lor (\neg \neg q)$. We apply Double negation, getting

 $(\neg(p \rightarrow q)) \lor q$. We apply Conditional Interpretation, getting $(\neg(p \rightarrow q)) \lor (\neg q)$. We apply Double negation, getting $(\neg(p \rightarrow q)) \lor q$. We apply De Morgan's Law and Double Negation, getting $((\neg q) \land p) \lor q$. We apply distributivity, getting $((\neg q) \lor q) \land (p \lor q)$. Since $(\neg q) \lor q \equiv T$, and $T \land r \equiv r$ (for $r = (p \lor q)$), the final result is $p \lor q$.

10. Fix our domain to be \mathbb{R} . Prove or disprove: $\forall x \exists y \forall z, x^2 \leq y^2 + z^2$.

The statement is true. Let $x \in \mathbb{R}$ be arbitrary. We will choose y = x. Now, let $z \in \mathbb{R}$ be arbitrary. We have $z^2 \ge 0$, a property of squares. We now add x^2 to both sides, getting $z^2 + x^2 \ge 0 + x^2 = x^2$. Finally, since y = x, also $y^2 = x^2$, so $z^2 + y^2 \ge x^2$.