MATH 245 F18, Exam 1 Solutions

1. Carefully define the following terms: floor, divides, nand, Commutativity theorem (for propositions).

Let $x \in \mathbb{R}$. Then there is a unique integer n, which we call the floor of x, which satisfies $n \leq x<n+1$. Let $a, b \in \mathbb{Z}$. We say that a divides b if there exists some $c \in \mathbb{Z}$ with $a c=b$. Let p, q be propositions. p nand q is a compound proposition that is F if p, q are both T, and T otherwise. The Commutativity theorem states that for any propositions $p, q, p \vee q \equiv q \vee p$ and $p \wedge q \equiv q \wedge p$.
2. Carefully define the following terms: Double Negation semantic theorem, Vacuous Proof theorem, converse, predicate.
The Double Negation semantic theorem states that for any proposition $p, \neg(\neg p) \equiv p$. The Vacuous Proof theorem states that for any propositions $p, q, \neg p \vdash p \rightarrow q$. The converse of conditional proposition $p \rightarrow q$ is $q \rightarrow p$. A predicate is a collection of propositions, indexed by one or more free variables, each drawn from its domain.
3. Calculate, and simplify, $\binom{100}{1}-\binom{100}{0}$.

We have $\binom{100}{1}=\frac{100!}{99!1!}=\frac{100 \cdot 99!}{99!1!}=\frac{100}{1!}=\frac{100}{1}=100$, cancelling $99!$ numerator and denominator. We also have $\binom{100}{0}=\frac{100!}{100!0!}=\frac{1}{0!}=\frac{1}{1}=1$, cancelling 100! numerator and denominator. Subtracting, we get $100-1=99$.
4. Let $a, b \in \mathbb{Z}$, with $a \leq b$. Prove that $a+1 \leq b+2$, without using any theorems.

Because $a \leq b$, the integer $b-a \in \mathbb{N}_{0}$. We also know that $1 \in \mathbb{N}_{0}$, and their sum $b-a+1 \in \mathbb{N}_{0}$. But also $b-a+1=(b+2)-(a+1)$, so $a+1 \leq b+2$.
5. State the Conditional Interpretation Theorem, and prove it using a truth table.

Thm. Let p, q be propositions. Then $p \rightarrow q \equiv q \vee \neg p$.
Pf. The third and fifth columns of the truth table (to the
right) agree; hence the two propositions are equivalent.

p	q	$p \rightarrow q$	$\neg p$	$q \vee \neg p$
T	T	T	F	T
T	F	F	F	F
F	T	T	T	T
F	F	T	T	T

6. Fix our domain to be \mathbb{R}. Simplify the proposition $\neg(\forall x \exists y \forall z, x \leq y<z)$ as much as possible (where nothing is negated).
We begin by pulling \neg into the quantifiers, as $\exists x \forall y \exists z \neg(x \leq y<z)$. Note that $x \leq y<z \equiv(x \leq y) \wedge(y<z)$, so we apply De Morgan's law to get $\exists x \forall y \exists z(\neg(x \leq y)) \vee \neg(y<z)$. Lastly, we simplify the inequalities to get $\exists x \forall y \exists z(x>y) \vee(y \geq z)$. Note that this can NOT be written as a double inequality.
7. Let $x \in \mathbb{R}$. Suppose that x is not odd. Prove that $\frac{x}{3}$ is not odd.

Warning: A direct proof is not recommended, because "not odd" does not imply "even" for real numbers.
We use a contrapositive proof. Assume that $\frac{x}{3}$ is not not odd, i.e. odd. Hence $\frac{x}{3}$ is an integer, and there is some integer n with $\frac{x}{3}=2 n+1$. Multiplying both sides by 3 , we have $x=3(2 n+1)=2(3 n)+3=2(3 n+1)+1$. Since $3 n+1$ is an integer, x is odd, and hence not not odd.
8. Without using truth tables, prove the Composition Theorem: $(p \rightarrow q) \wedge(p \rightarrow r) \vdash p \rightarrow(q \wedge r)$.

We use a direct proof. We apply Conditional Interpretation twice to the hypothesis, to get $((\neg p) \vee q) \wedge((\neg p) \vee r)$. Now we apply distributivity to get $(\neg p) \vee(q \wedge r)$. We apply Conditional Interpretation again to get $p \rightarrow(q \wedge r)$.
9. Simplify $\neg((p \rightarrow q) \wedge(\neg q))$ as much as possible (where only basic propositions are negated).

METHOD 1: We apply Conditional Interpretation to get $\neg((q \vee \neg p) \wedge(\neg q))$, and distributivity to get $\neg((q \wedge \neg q) \vee$ $((\neg p) \wedge(\neg q)))$. Because $q \wedge \neg q \equiv F$, and $F \vee r \equiv r$ (for $r=((\neg p) \wedge(\neg q)))$, this simplifies as $\neg((\neg p) \wedge(\neg q))$. Applying De Morgan's Law, we get $(\neg \neg p) \vee(\neg \neg q)$. Finally, applying Double Negation twice, we get $p \vee q$.
METHOD 2: We start with De Morgan's Law, getting $(\neg(p \rightarrow q)) \vee(\neg \neg q)$. We apply Double negation, getting $(\neg(p \rightarrow q)) \vee q$. We apply Conditional Interpretation, getting $(\neg(q \vee \neg p)) \vee q$. We apply De Morgan's Law and Double Negation, getting $((\neg q) \wedge p) \vee q$. We apply distributivity, getting $((\neg q) \vee q) \wedge(p \vee q)$. Since $(\neg q) \vee q \equiv T$, and $T \wedge r \equiv r$ (for $r=(p \vee q)$), the final result is $p \vee q$.
10. Fix our domain to be \mathbb{R}. Prove or disprove: $\forall x \exists y \forall z, x^{2} \leq y^{2}+z^{2}$.

The statement is true. Let $x \in \mathbb{R}$ be arbitrary. We will choose $y=x$. Now, let $z \in \mathbb{R}$ be arbitrary. We have $z^{2} \geq 0$, a property of squares. We now add x^{2} to both sides, getting $z^{2}+x^{2} \geq 0+x^{2}=x^{2}$. Finally, since $y=x$, also $y^{2}=x^{2}$, so $z^{2}+y^{2} \geq x^{2}$.

